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Quotient dimensions

Proportional few/many (as opposed to cardinal):

(1) Few egg-laying mammals suckle their young.

Degrees as proportions (Solt 2009, Bale & Schwarz 2019)?

Fractions in subscripts of measure-function µ in Bale and Schwarz’s
lexical entry formuch/many:

(2) λdλPλQ . µ(P ∩ Q) ≥ d
where µ has a contextually set value, e.g. one of µweight, µvolume,
µlength, µ#, µ weight

vol-of-P
, µ weight

vol-of-Q
, µ #

#-of-P
, µ #

#-of-Q
, µ #

length-of-rope
,

etc.
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Percent

Conservativity-violating usages of percent (Ahn, 2012; Sauerland, 2014;
Ahn & Sauerland, 2017; Sauerland & Pasternak, under review):

(3) The company hired 30 percent women.

Sauerland & Pasternak (under review) analyze percent as follows:

(4) λDdtλnnλD′
dt.D

′ ⊆ D ∧ max(D′) ≥ n
100 × max(D)

See also Ahn & Sauerland (2015); Li (2018); Solt (2018); Spathas (2019); Pasternak
(2019); Coppock (submitted).
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Degree multiplication galore

Degree division

parts per million,miles per hour, dollars per couple, hospitals per capita
situps a day, cents on the dollar, cents for every dollar

Degree multiplication

A is twice as tall as B
cubic centimeters
3 apples at $2 per apple
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Algebra of degrees: What we have

Operations defined over degrees:

Cresswell (1977): only comparison
Klein (1991) contributes addition, through concatenation
Sassoon (2010) and van Rooij (2011) explicitly discuss
multiplication within a particular dimension (as in twice as tall),
building on measurement theory (Krantz et al., 1971)

But cross-dimensional multiplication and division will require more
foundational changes.
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Challenge problems

(5) Sainetra walked at 5 mph for 3 hours.
Therefore, Sainetra walked 15 miles.

(6) Zahra did 30 situps a day for a week.
Therefore, Zahra did 210 situps in one week.

(7) Tickets cost $5 per couple.
Therefore, tickets for 3 couples costs $15.

(8) Three apples at $2 an apple is $6.
(9) The song is 2 minutes long at 180 bpm.

Therefore, at 200 bpm it would be 1:48.
(10) I bought this for $100 and sold it for 70 cents on the dollar.

Therefore I sold it for $70.
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Preview

kilometers per hour⇝ km
hour
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Quantity calculus: the study of quantities

quantity: property of a phenomenon, body, or substance, where the
property has a magnitude that can be expressed as a number and a
reference, e.g.:

radius (of circle A), wavelength (of the sodiumD radiation)
kinetic energy, heat
electric charge, electric resistance

(JCGM, 2012)
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Quantity calculus

Three operations:
product of quantities
product of a number times a quantity
addition of quantities of the same kind

(often presented as important starting point)
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Quantity calculus

History goes back to Fourier 1822 (de Boer, 1994)

Two approaches to the algebraic foundations:
Unit-centric: e.g. Carlson 1979, Kitano 2013
Dimension-centric: e.g. Krystek 2015, Raposo 2018, 2019

“Under this viewpoint, the dimension is an intrinsic property of a
quantity, in contrast to its numerical value, which depends on the
unit chosen, or the unit itself, which can be changed arbitrarily.”
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Basic dimensions (B)

Dimension Base unit
L – length meter (m)
M – mass kilogram (kg)
T – time second (s)
I – electric current ampere (A)
Θ – thermodynamic temperature kelvin (K)
N – amount of substance mole (mol)
J – luminous intensity candela (cd)

(JCGM, 2012)
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Derived dimensions

Example: If h is Planck’s constant then

dim(h) = M · L2 · T−1

Fact:
The Planck constant multiplied by a photon’s frequency is equal to a photon’s energy.
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Derived dimensions

L

M

T

...

L · L ·M

L · L

L ·M

L · T

M · T

L ·M · T
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The dimensions form a group

D is a group, so:
if A,B ∈ D , then A · B ∈ D

D has an identity element 1D , such that for every D ∈ D :

D · 1D = 1D · D = D

There is an inverse D−1 for every D ∈ D :
an element such that

D · D−1 = 1D
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Dimensionless quantities

So-called “dimensionless quantities” have dimension 1D :
ratios of two quantities of the same kind

Ex. relative permeability, dollars earned per dollars saved
numbers of entities

Ex. Number of molecules in a given sample

(JCGM, 2012)
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Larger exponents

D0 = 1D

D1 = D
D2 = D · D D−2 = (D−1)2

D3 = D · D−2 D−3 = (D−1)3

...
...

Dk = D · Dk−1 D−k = (D−1)k
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Full set of dimensions

Each dimension D ∈ D has a unique expression

D = Ln1 ·Mn2 · Tn3 · In4 ·Θn5 · Nn6 · Jn7

where n1, ..., n7 are integers
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Dimension mapping

Q D
dim

for any quantityQ ∈ Q:

dim(Q) ∈ D
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Dividing up the quantities by dimension

dim

M
50g

40g

T

5s

10s

15s

L
1m

5m

dim−1(M)
the set of quantities of mass

Notation:
dim−1(D) = QD
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Fiber bundle
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Each fiber is a vector space over R

For all dimensions D,QD is a vector space overR, so:
There exists a zero element 0D ∈ QD such that for any q ∈ QD:

q + 0D = q

For any q ∈ QD, there exists an additive inverse element−q ∈ QD
such that:

q + (−q) = 0D

There exists amultiplicative identity element 1 fromR such that
for any q ∈ QD:

q ∗ 1 = 1 ∗ q = q
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Each fiber is a vector space over R

For all dimensions D,QD is a vector space overR,
so for any q, q1, q2, q3 ∈ Q and scalars α, α1, α2 ∈ R:

q1 + q2 ∈ QD (closure under addition)
α ∗ q ∈ QD (... scalar multiplication)
q1 + q2 = q2 + q1 (commutativity of+)
q1 + (q2 + q3) = (q1 + q2) + q3 (associativity of+)
α1 ∗ (α2 ∗ q) = (α1 × α2) ∗ q (compatibility of ∗ and×)
α ∗ (q1 + q2) = α ∗ q1 + α ∗ q2 (distributivity 1)
(α1 + α2) ∗ q = α1 ∗ q + α2 ∗ q (distributivity 2)
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Fiber bundle
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Cross-dimensional multiplication

⟨Q, ∗⟩ is an abelian monoid, so:
If q1, q2 ∈ Q, then q1 ∗ q2 ∈ Q

There is amultiplicative identity element 1 such that for all q ∈ Q:

q ∗ 1 = 1 ∗ q = q

If q1, q2, q3 ∈ Q then
q1 ∗ (q2 ∗ q3) = (q1 ∗ q2) ∗ q3 (associativity)
q1 ∗ q2 = q2 ∗ q1 (commutativity)
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Existence of inverses

Not every quantity has an inverse; you can’t divide by any 0D (D ∈ D).

But for every non-zero quantity q ∈ Q
there is an inverse q−1:

q ∗ q−1 = 1

Or: The set of non-zero quantities forms a group under multiplication.
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Dimension mapping

Q D
dim

for any quantityQ ∈ Q: dim(Q) ∈ D
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Unit mapping

Q D
unit

where unit(D) picks out a q ∈ QD
(a q such that dim(q) = D)

Restrictions:
You can’t pick the zero element.
unitmust be a group homomorphism:

unit(A · B) = unit(A) ∗ unit(B)
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Inverse units

Recall: Every non-zero q ∈ Q has an inverse q−1.

So if km = unit(L) and hour = 60 ∗ (unit(T))
then we can represent ‘kilometers per hour’ as:

km ∗ hour−1
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Incorporating quantity calculus into aMontagovian framework
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Representation language

LQ: a lambda calculus with quantity multiplication.

The semantic value of an expression ϕ inLQ is given by JϕKM , where:

M = ⟨A,V, ⟨DB, ·⟩, ⟨Q, ∗,+⟩, unit, dim, I⟩
where:

A is a set of individuals, V a set of events

⟨DB, ·⟩ is an abelian group with basisB, a finite set of dimensions

dim is a surjection map fromQ ontoDB

Each dim−1(D) = QD yields a one-dimensional vector space overR
⟨Q, ∗⟩ is an abelian monoid

unit is a group homomorphism fromDB toQ

I maps each constant of type τ to an element of Dτ
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Importing the algebraic operations from the meta-language into the
representation language:Jα+ βKM = JαKM + JβKM

Jα · βKM = JαKM · JβKM

Jα ∗ βKM = JαKM ∗ JβKM

Jα−nKM
= (JαKM)−n

Abbreviation:

α ∗ β−1 ≡ α

β
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Denotations for some constants of type d in the representation language:

JmKM = m = unit(L)JkmKM = 1000 ∗m

JsKM = s = unit(T)JminuteKM = 60 ∗ sJhourKM = 60 ∗ 60 ∗ s
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Lexical entries for English words:

(11) meter(s)⇝ m
(12) kilometer(s)⇝ km

(13) second(s)⇝ s
(14) minute(s)⇝ minute
(15) hour(s)⇝ hour

(16) per⇝ λdλq . q ∗ d−1

km ∗ hour−1 ≡ km
hour

km
kilometers

λq . q ∗ hour−1

λdλq . q ∗ d−1

per
hour
hour
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Linking individuals to quantities
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The Lønning Triangle

A

QW

R
weighs ◦ kilo

weighs kilo

(Lonning, 1987; Champollion, 2017)
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The Lønning Triangle (our variant)

A

QD

R

µD ◦ v

µD

v : v(q) = q
unit(dim(q))

What is µD?

The ‘instantiates kind’ relation? (Anderson &Morzycki, 2015; Scontras, 2017)

The ‘bears instance of trope type’ relation? (Moltmann, 2009)
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Recall: Bale & Schwarz notation

µweight, µvolume, µlength, µ#, µ weight
vol-of-P

, µ weight
vol-of-Q

, µ #
#-of-P

, µ #
#-of-Q

, µ #
length-of-rope

, etc.

Now we can put some meat on the bones of formal representations like
this; we have for example:

µ L
T
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Capturing inferences

(17) Sainetra walked at 5 km per hour for 3 hours.
Therefore, Sainetra walked 15 km.
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Challenge problem #1
Challenge problem #2
Challenge problem #3

Speed ∗ time = distance

speed(e) ∗ τ(e) = σ(e)

µT ≡ τ ‘temporal extent’

µL ≡ σ ‘spatial extent’

µ L
T
≡ speed
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Examples

Challenge problem #1
Challenge problem #2
Challenge problem #3

Axiom (or ‘meaning postulate’)

µ-product principle: The product of two measure functions is equal to
the measure function along the product of the corresponding dimensions:

µA(x) ∗ µB(x) = µA·B(x)

Corollary:

µ A
B
(x) ∗ µB(x) = µA(x)

In particular:

µ L
T
(x) ∗ µT(x) = µL(x)
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Examples

Challenge problem #1
Challenge problem #2
Challenge problem #3

λe .walk(e) ∧ µ L
T
(e) = 5 ∗ km

hour

λe .walk(e)

walk

λe . µ L
T
(e) = 5 ∗ km

hour

λqλe . µ L
T
(e) = q

at

5 ∗ km
hour

5

five

km ∗ hour−1

km

km

λq . q ∗ hour−1

λdλq . q ∗ d−1

per

hour

hour

Cf. Ionin &Matushansky 2006
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Motivation
Quantity calculus

Representation language
Examples

Challenge problem #1
Challenge problem #2
Challenge problem #3

Solution to challenge problem #1

walk at 5 km per hour⇝ λe .Walk(e) ∧ µ L
T
(e) = 5 ∗ km

hour

walk at 5 km per hour for three hours
⇝ λe .Walk(e) ∧ µ L

T
(e) = 5 ∗ km

hour ∧ µT(e) = 3 ∗ hour

By the µ-product principle, any event that satisfies the latter description
also satisfies:

walk 15 km⇝ λe .Walk(e) ∧ µL(e) = 15 ∗ km

Solved!
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Motivation
Quantity calculus

Representation language
Examples

Challenge problem #1
Challenge problem #2
Challenge problem #3

Challenge problem #2: Situps a day

(18) Zahra did 30 situps a day for a week.
Therefore, Zahra did 210 situps in one week.
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Motivation
Quantity calculus

Representation language
Examples

Challenge problem #1
Challenge problem #2
Challenge problem #3

Count dimensions

Option 1: Assume that for every property P, there is a different
dimension #P.

µ#bear(x) = 3 ∗ unit(#bear) ‘x is three bears’

µ#situp(e) = 30 ∗ unit(#situp) ‘e is 30 situps’

Cf. Krifka’s (1995) ‘object unit’ function
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Motivation
Quantity calculus

Representation language
Examples

Challenge problem #1
Challenge problem #2
Challenge problem #3

What is a day?

Abbreviation:
day ≡ 24 ∗ (60 ∗ (60 ∗ s))

This assumes ‘day’ = ‘mean solar day’; otherwise we need two basic units of time!
Also, duration vs. object (Fillmore, 1997); cf. every day à la Champollion (2016a,b).
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Quantity calculus

Representation language
Examples

Challenge problem #1
Challenge problem #2
Challenge problem #3

30 situps a day⇝ 30 ∗ unit(#situps)
day

do 30 situps a day⇝ λe . µ#situps
T

(e) = 30 ∗ unit(#situps)
day

do 30 situps a day for a week
⇝ λe . µ#situps

T
(e) = 30 ∗ unit(#situps)

day ∧ µT(e) = 7 ∗ day

µ #situps
T

(x) ∗ µT(x) = µ#situps(x)

do 210 situps in one week
⇝ λe . µ#situps(e) = 210 ∗ unit(#situps) ∧ µT(e) = 7 ∗ day

Solved!*
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Motivation
Quantity calculus

Representation language
Examples

Challenge problem #1
Challenge problem #2
Challenge problem #3

Challenge problem #3: dollars per couple

(19) Tickets cost $5 per couple.
Therefore, tickets for 3 couples costs $15.
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Motivation
Quantity calculus

Representation language
Examples

Challenge problem #1
Challenge problem #2
Challenge problem #3

Tickets cost $5 per couple.

∀x[tickets(x) → µ $$
#couple

(x) = 5∗$
unit(#couple) ]

Tickets for 3 couples cost $15.

∀x[[tickets(x) ∧ µ#couple(x) = 3 ∗ unit(#couple)] → µ$$(x) = 15 ∗ $]

µ#couplePoss
(x) = 3 ∗ unit(#couple) ≡ |y : couple(y) ∧ Poss(y, x)| = 3
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Count dimensions: One or many?

Option #1:
For every P, a dimension #P.

Worked for situps per day
But nowB is infinite
What dimensions are allowed?
More than just properties:
tickets for 3 couples

Option #2:
There is only one # dimension.

Precedent in quantity calculus
KeepsB finite
How to distinguish:

tickets per couple
tickets per person
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Takeaway messages

It is useful to appeal to a notion of quotient among quantities across
different dimensions.

It’s not something we have yet in degree semantics.
We can get it by importing a system of quantity calculus.
I have illustrated how to do this using the dimension-centric
approach of Raposo (2018, 2019).
At the minimum, we’ve gotten a lexical entry for per.
But much more could be built on these foundations.
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Thank you!

This work has benefitted from discussions with audience members at the NYU
Philosophy of Language Workshop and the MIT Semantics Triangle, especially
Lucas Champollion, Friederike Moltmann, Maša Močnik, Ying Gong, Hayley Ross,
and Kai von Fintel. Thanks also to David Alvarez (BU undergraduate UROP
research assistant, summer 2019) for a first pass on the analysis of per.
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