
A Translation from Logic to English with

Dynamic Semantics�

Elizabeth Coppock and David Baxter

Cycorp, Inc., Austin TX 78731, USA

Abstract. We present a procedure for translating predicate logic into En-
glish, which generates both referring and non-referring expressions using
a dynamically updated context representation. The system treats refer-
ring and non-referring expressions within a unified framework, capturing
their common properties – both bound and referential anaphora require
an accessible antedecent – and the special properties of non-referring ex-
pressions: Non-referring expressions are introduced with quantificational
determiners, and correspond to short-term discourse referents.

Keywords: natural language generation, dynamic semantics, predicate
logic, quantification, anaphora.

1 Introduction

The goal of the present work is to define an algorithm for translating formulas of
predicate logic into concise, natural-sounding English, with quantificational ex-
pressions, proper names, indefinites, definite descriptions, and pronouns, wher-
ever appropriate (examples are given in §2). Because predicate logic contains
both constants and variables, this algorithm should generate both referring and
non-referring expressions.

Work in the field of generating referring expressions [1–16] is designed for the
task of providing an appropriate means of referring to a given object in a domain.
For example, the input might be a situation in which there is more than one book,
and the book in question is on a unique table. An appropriate output for this
situation would be the book on the table. Because of the nature of the input and
the task, these systems only generate expressions that genuinely refer to objects
or groups of objects. Even those systems within this tradition of research that
generate “quantificational” expressions [7, 12] such as those women who have
fewer than two children or the people who work for exactly 2 employers really
only generate referential expressions, referring to groups of objects. The field
‘generating referring expressions’ is thus appropriately named, so far, because it
deals only with the generation of genuinely referring expressions.
� Thanks to the LENLS organizing committee and audience, David Beaver, Cleo

Condoravdi, Nicholas Asher, Lucas Champollion and Elias Ponvert for feedback.
This work was partially supported under the DARPA Rapid Knowledge Formation
program.

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 197–216, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

198 E. Coppock and D. Baxter

A separate line of research, known as ‘tactical generation’ or ‘realization’
concentrates on sentence generation based on formal grammatical theories such
as Head-Driven Phrase Structure Grammar (HPSG) [17–20], Lexical Functional
Grammar (LFG) [21–24] and Combinatory Categorial Grammar (CCG) [25–27].
Some systems in this category take as input a logical semantic representation
that contains quantifiers and variables. For example, the HPSG generation sys-
tem described in [17] takes as input the typed feature structure corresponding
to the CONTENT value of the top-level HPSG sign using Pollard and Yoo’s
HPSG analysis of quantification [28], which makes the input a notational vari-
ant of quantificational logic. Systems in this category may potentially generate
non-referring expressions, such as no man and himself in noi man likes himselfi.

Tactical realization systems based purely on existing grammatical formalisms
like [17] lack a representation of the discourse and a theory of antecedent-
accessibility that could be used to decide, for example, when a pronoun, definite
description, or indefinite description, would be an appropriate way to realize a
given discourse referent. They are incomplete without algorithms for generat-
ing referring expressions. But the problem cannot be solved simply by adjoining
a tactical realization system to a system for generating referring expressions,
because there are common constraints between referential and bound variable
anaphora. For example, both types of anaphora require a cognitively accessi-
ble antecedent. The fields of tactical realization and generating referring expres-
sions should not be kept separate; rather, referring and non-referring expressions
should be treated within a unified framework.

The idea that referential and bound variable anaphora have certain common-
alities is one of the insights underlying dynamic theories of semantics, such as
Discourse Representation Theory (DRT; [29]) and File Change Semantics [30].
Under such theories, both referring and non-referring expressions correspond
to ‘discourse referents’ [31], which are not actual referents but elements of the
discourse. According to Karttunen’s definition (p. 4), “the appearance of an
indefinite noun phrase [or any noun phrase, for our purposes] establishes a ‘dis-
course referent’ just in case it justifies the occurrence of a coreferential pronoun
or a definite noun phrase later in the text.” Pronouns can express either bound
variables or constants, so a discourse referent may or may not correspond a
genuine referent.

A representation containing discourse referents such as DRT’s Discourse Rep-
resentation Structures (DRSs) might therefore seem to be a natural starting point
for a system designed to capture the commonalities between referential and bound
variable anaphora. Combinations of HPSG and DRT (see [32] and references cited
therein) could potentially be used in a practical natural language generation sys-
tem; indeed, Minimal Recursion Semantics (MRS; [19]) is a form of Underspecified
Discourse Representation Theory [33], and MRS-based natural language genera-
tion systems exist [6]. However, this strategy does not capture phenomena that
reflect changes to the discourse context as the discourse proceeds, because if the
input is a fully-formed DRS, then the discourse representation will remain fixed

A Translation from Logic to English with Dynamic Semantics 199

throughout the generation procedure. The dynamic nature of the framework is
not utilized under such an approach.

The framework described in the present paper is inspired by some of the ideas
underlying DRT, including the notion of the discourse referent. However, rather
than using a complete Discourse Representation Structure as an input, a (some-
what more minimal) representation of the discourse is built up as the sentence is
generated. Using this, the generation system keeps track of the changes that take
place as the sentence is in progress, including the introduction of new discourse
referents. It is thus dynamic, in the sense that it updates the discourse as it goes
along.

2 Problems with Non-referential ‘Discourse Referents’

Strictly speaking, it is not necessary to be able to generate quantificational
determiners and bound variable anaphora, if the goal is to produce an English
sentence for any given formula of predicate calculus. For an input like this:

(1) ∀x[isa(x,Man)→ loves(x, x)]

one could give a direct translation like this:

(2) For every x, if x is a man, then x loves x.

This output counts as English as long as explicit variables like ‘x’ count as
English. But it is more desirable to produce the following kind of output:

(3) Every man loves himself.

If the goal is to produce concise English translations of first-order logic formulas,
then it is necessary to produce these kinds of non-referring expressions. This
leads to special challenges having to do with determiner selection and capturing
lifespan limitations.

2.1 Determiner Selection

In simple cases, universally quantified variables as in (4) are introduced with
every, as in (5), and existentially quantified variables as in (6) are introduced
with some, as in (7):

(4) ∀x[loves(Mary, x)]

(5) Mary loves everything.

(6) ∃x[loves(Mary, x)]

(7) Mary loves something.

200 E. Coppock and D. Baxter

A first pass at a determiner-selection algorithm would be then: If the variable is
universally quantified, use every; if it is existentially quantified, use some. But
this simple algorithm would fail at cases where a universally quantified variable is
introduced with an indefinite determiner, as in donkey sentences. The universally
quantified variables in the formula in (8) are introduced as indefinites in (9):

(8) ∀x∀y[[isa(x,Donkey) ∧ isa(x,Farmer) ∧ owns(x, y)]→ beats(x, y)]

(9) If a farmer owns a donkey, then he beats it.

Using every instead would not express the same idea:

(10) If every farmer owns every donkey, then he beats it.

Thus, universally quantified variables are not always introduced with every.
One might then refine the algorithm to say that when the variable occurs in

the antecedent of a conditional, then it is introduced with an indefinite. But
there are cases of this type in which the variable is introduced by every:

(11) ∀x[isa(x,Donkey)→ loves(Mary, x)]

(12) Mary loves every donkey.

When the if-then structure of the logical input formula is lost in the English
translation, the variable is introduced with every.

Universally quantified variables can also be introduced with determiners other
than every in the presence of negation. A formula like (13) has two concise
renditions, (14) and (15), and neither uses every.

(13) ∀x[isa(x,Donkey)→ ¬loves(Mary, x)]

(14) Mary doesn’t love any donkey(s).

(15) Mary loves no donkey(s).

When negation is expressed on the verb, the universally quantified variable is
expressed with any; in the other case, the determiner no expresses both negation
and universal quantification.

The facts are slightly different when the variable is in subject position. Con-
sider an example in which x is the first argument of loves:

(16) ∀x[isa(x,Donkey)→ ¬loves(x,Mary)]

In such a case, only no is possible; verbal negation with any is not possible:

(17) No donkeys love Mary.

(18) *Any donkeys don’t love Mary.

A Translation from Logic to English with Dynamic Semantics 201

Thus, syntactic considerations appear to play a role in determiner selection as
well.

Negation does not always cause a universally-quantified variable to be realized
with any or no; when the negation outscopes the universal quantifier, then every
is used, as in the following example:

(19) ¬∀x[isa(x,Donkey)→ loves(Mary, x)]

(20) Mary doesn’t love every donkey.

Thus, whether a universally quantified variable should be realized as every,
some/a, any, or no depends (at least) on whether it is in the protasis of a
conditional, the presence and relative scope of negation, and syntactic position.

Existentially bound variables are also sensitive to negation. When the exis-
tential quantifier outscopes negation, some is used, as usual, whether in subject
or object position:

(21) ∃x[¬loves(x,Mary)]

(22) Someone doesn’t love Mary.

(23) ∃x[¬loves(Mary, x)]

(24) Mary doesn’t love someone.

However, when negation outscopes the existential quantifier, no and any become
appropriate, following the pattern observed with universal quantifiers:

(25) ¬∃x[loves(x,Mary)]

(26) Noone loves Mary. / *Anyone doesn’t love Mary.

(27) ¬∃x[loves(Mary, x)]

(28) Mary doesn’t love anyone. / Mary loves noone.

Thus, whereas existential quantifiers give rise to any and no only when they are
in the scope of negation, universal quantifiers give rise to them only when they
outscope negation.

Since negation of an existential is equivalent to universal quantification over
a negation, one might argue that any never really corresponds to a universal
quantifier; to get an output with any one would convert a formula with a univer-
sal quantifier outscoping a negation to an equivalent formula with an existential
quantifier outscoped by it. So (29) would be converted to (30) before producing
a sentence with any:

(29) ∀x[¬loves(Mary, x)]

(30) ¬∃x[loves(Mary, x)]

202 E. Coppock and D. Baxter

This would allow one maintain the generalization that any corresponds to an
existential quantifier, as is sometimes assumed (e.g. [34]). We assume, however,
that any can correspond to universally quantified variables as well as existentially
quantified ones. One argument for this view is that when multiple universal
quantifiers outscope negation as in (31), both may correspond to an any phrase
as in (32).

(31) ∀x[∀y[¬loves(x, y)]]
(32) It is not the case that anyone loves anyone (else).

Only one of the quantifiers in (31) can be “swapped” with a negation in order to
produce an existential quantifier, yet there are two any phrases. At least one of
them must correspond to a universal quantifier. Since we must allow universally
quantified variables to be realized with any in such cases, we might as well allow
it in general.

The facts listed above show that the choice of determiner to realize a variable
is a non-trivial function of the logical operators present in the input formula and
their relative scope. The determiner selection algorithm given in §3.3 captures
these patterns.

2.2 Lifespan Limitations

Like referring expressions, non-referring expressions can be anaphoric, when
there is an accessible antecedent in the discourse. The second realization of a
given discourse referent should, barring potential ambiguity, take the form of a
pronoun, whether the discourse referent corresponds to a constant or a variable:

(33) loves(Mary,Mary)

(34) Mary loves herself.

(35) ∀x¬loves(x, x)
(36) No woman loves herself.

However, unlike discourse referents corresponding to constants, discourse ref-
erents corresponding to variables (realized with non-referring expressions) exist
in the discourse only temporarily, and thus have a limited ‘lifespan’ [31]. This is
exemplified in (37), from Heim [30], and (38).

(37) Everyone found a cat and kept it. #Then it ran away.

(38) Noi self-respecting lady will give you heri phone number. #I know heri.

On the reading of (37) on which the universal quantifier outscopes the existential
quantifier, the it in the second sentence cannot corefer with the it in the first
sentence. Similarly, the discourse referent introduced by no self-respecting lady
in (38) in is a short-term referent [31], whose lifespan ends with the end of the

A Translation from Logic to English with Dynamic Semantics 203

first sentence. From a parsing perspective, the challenge is to assign the right
interpretations to pronouns. From a generation perspective, the challenge is to
avoid generating pronouns that are anaphoric to discourse referents that are no
longer active.

This is a challenge that does not arise with referential expressions. Contrast
(38) with the following example:

(39) Janei will give you heri phone number. I know heri.

In (39), the discourse referent survives into the second sentence, because proper
names are referential, and the lifespan of a discourse referent introduced with
a referential expression is in principle unlimited. If referring and non-referring
expressions are not distinguished, then this difference between them cannot be
captured. Thus, although bound variable and referential anaphora should be
treated in a unified fashion, the treatment should not be so unified as to blur
the distinction between them.

The lifespan of a short-term discourse referent does not always correspond to
the enclosing tensed sentence. Whereas a discourse referent introduced by every
is limited to the protasis of a conditional, a discourse referent introduced with
an indefinite in the protasis may extend to the apodosis [29, 30]:

(40) *If everyi farmer owns everyj donkey, then hei beats itj .

(41) If ai farmer owns aj donkey, then hei beats itj .

The lifespan of the indefinite is not indefinite, however:

(42) If ai farmer owns aj donkey, then hei beats itj . #I know himi.

The lifespan of an indefinite introduced in the protasis of a conditional ends with
the apodosis.

3 The Cyc NLG System

We now present a procedure for translating predicate calculus into English, which
treats referring and non-referring expressions in a unified framework, and cap-
tures all of the facts described in the previous section, regarding both determiner
selection and lifespan limitations. The system we present is the natural language
generation (NLG) system for Cyc [35], a large-scale commonsense knowledge
base and reasoning engine. Cyc is based on CycL, a logic that subsumes first
order logic [36],1 and the system we describe translates from CycL to English.
Here, we concentrate on the first order portion of CycL, making limited use of
Cyc-specific ontological distinctions, in order to maximize the applicability of
our model. The input is described in detail in §3.1.
1 The majority of the assertions in the Cyc Knowledge Base are statement of first-order

logic; the majority of the remaining assertions can be transformed into statements
first-order logic [36].

204 E. Coppock and D. Baxter

Our procedure uses two forms of dynamically updated context: the discourse
context, which lists the discourse referents that have been mentioned, and the
operator context, which stores information that is stripped away from the input
formula. The discourse context is discussed in §3.2; the operator context will be
discussed in §3.3.

3.1 Input: First-Order Predicate Calculus Part of CycL

The input to the Cyc NLG system is a formula of CycL, which is a higher-
order logic built on first-order predicate calculus [37]. CycL has a number of
fancy features, such as quoting, meta-assertions, lambda expressions (forming
terms through variable abstraction), and kappa expressions (forming predicates
through variable abstraction), most of which will not concern us here. In this
paper, we will focus on inputs from the first-order portion of CycL. The set of
expressions within this first-order portion contains variables (e.g. x, y, z), and
atomic constants denoting individuals (e.g. Mary), collections (e.g. Donkey)
predicates, (e.g. loves), and functions (e.g. MotherOf). The predicates and
functions can in principle be of any arity. In CycL, arguments of predicates and
functions can in principle be any other CycL expression, so CycL is higher order,
but we can restrict our attention to first-order predicates and functions. The set
of non-atomic expressions contains:2

– Non-Atomic Terms: if γ is a function and ξ1...ξn a sequence of arguments
matching γ’s argument constraints, then γ(ξ1...ξn) is a term.

– Atomic Sentences: if π is a predicate and ξ1...ξn a sequence of arguments
matching π’s argument constraints, then π(ξ1...ξn) is a sentence.

– Negations: if φ is a sentence then ¬φ is a sentence.
– Conjunctions: if φ is a sentence and ψ is a sentence than φ∧ψ is a sentence.
– Disjunctions: if φ is a sentence and ψ is a sentence then φ∨ ψ is a sentence.
– Implications: if φ is a sentence and ψ is a sentence then φ→ ψ is a sentence.
– Universals: if φ is a sentence and ξ is a variable then ∀ξφ is a sentence.
– Existentials: if φ is a sentence and ξ is a variable then ∃ξφ is a sentence.

This logic can be given a standard model-theoretic semantics for predicate
calculus.

Other than the distinction between individuals and collections, this logic is
perfectly standard. In Cyc, collections are often used in place of one-place pred-
icates, so rather than farmer(x), we will have isa(x,Farmer), where Farmer
represents the collection of all farmers, and isa is a predicate relating an individ-
ual to a collection, which holds if the individual is an instance of the collection.

2 Regarding notation: We use the standard way of using parentheses in logic, rather
than using the Lisp-style notation that is normally used for CycL. Constants are in-
dicated with bold face (whereas in CycL they are prefixed with ‘#$’) and variables
with italics (rather than being prefixed with ‘?’ as in CycL). Following CycL conven-
tions, however, we use initial lowercase letters for predicates and initial uppercase
letters for individuals and collections. Variables of all types are lowercase.

A Translation from Logic to English with Dynamic Semantics 205

(We use the term instance for collections, rather than member, which we reserve
for sets; the idea is that collections represent concepts, while sets are merely
extensionally defined.) To give a more standard logic, one could replace all col-
lections with single-arity predicates, so the distinction between individuals and
collections is not completely crucial. However, it does happen to play a role in
the grammar, so the grammar would have to be adapted if that distinction were
eliminated.

The Cyc NLG system has full access to the Cyc Knowledge Base (KB), which
contains an English lexicon. The lexicon includes a set of generation templates,
which describe an English sentence or phrase corresponding to a function or
predicate, with open slots for the arguments. For example, the predicate likes is
associated with a template describing a transitive sentence in which the subject
is the realization of the first argument, the verb is a form of like that agrees with
the subject, and the object is a realization of the second argument. These tem-
plates thus accomplish argument linking. (Rather than stipulating the syntactic
realization of arguments on a case-by-case basis, one could derive these tem-
plates from more general principles, so the present system is not crucially tied
to a stipulative linking theory; we just take linking as given.) Aside from what
is specified in generation templates, the grammatical structure of a generated
utterance is determined procedurally. Therefore, the system that we describe
here is not only a natural language generation system, but also a grammar.

Because it was developed for the purpose of generation rather than parsing,
the theoretical constructs that this system uses are different from the ones that
have been developed under the parsing perspective. In particular, there are two
forms of context: discourse context and operator context. These are described in
the following two subsections.

3.2 Discourse Context

Definition. A discourse context D is a set of discourse referents [31]. Like
Heim’s ‘file cards’ [30, 38] and the elements of DRT universes [29], these dis-
course referents need not correspond to any particular entity in the situation
described by the sentence. Each discourse referent r is associated with a logical
expression α, which can be either a variable or a closed term, composed entirely
of constants (either atomic, e.g. Mary, or non-atomic, e.g. Mother(Mary)
‘Mary’s mother’).

Insofar as the logical expression associated with these discourse referents can
be either a variable or a closed term, they are similar to Muskens’s ‘registers’
[39], and unlike the elements of DRT universes, which correspond only to vari-
ables. As Muskens points out [39], allowing proper names to be translated with
constants eliminates the need for DRT’s ‘external anchoring’ device. From a gen-
eration perspective, this design choice is quite natural; it would be a waste to
convert constants in the input formula to variables before listing them among
the discourse referents.

206 E. Coppock and D. Baxter

Discourse referents are also associated with index features: person, number and
gender [40, 41]. Index features are computed on the basis of morphosyntactic
information if it is available, or encyclopedic knowledge in the Cyc Knowledge
Base (KB) otherwise. For example, the individual Mary is asserted to be a hu-
man female in the KB, so corresponding discourse referents will have a feminine
gender feature. These index features determine the form that pronouns take.

Side effects. We recursively define a generation function G(α), where α can be
any expression of the logic, which depends not only on α, but also on a global
discourse D and a global operator context O. We subdivide the definition of
G(α) into cases based on the logical expression type of α. A fundamental case
is when α is an atomic formula, as in (43).

(43) loves(Mary,Mary)

The most appropriate method for atomic formulas uses the generation template
for the predicate – a mapping from a logical predicate to a partial specification
of a sentence in natural language. The generation template for loves specifies
a template from which a syntax tree is built. A syntax tree is like an HPSG
sign [40], with “phonological”, semantic, and syntactic information, including
daughters for phrases. (Since we are computing textual output, the value of the
so-called phon feature is an orthographic string.)

A simplified rendition of the phrase that is ultimately generated for (43) is
in Fig. 1. The tree is traversed left to right, depth first, and may be expanded
during the traversal. Each time a node is visited, the value of the phon feature is
computed. We say that a subexpression of the logical formula has been realized
if the phon value of the phrase it corresponds to has been set. The phon value
of the mother is the concatenation of the phon values of the daughters. The
value of G is the phon value of the top-level phrase.

⎡
⎢⎣
phon “Mary loves herself”
cat S
sem loves(Mary,Mary)

⎤
⎥⎦

��������
��������⎡

⎢⎢⎢⎢⎢⎣

phon “Mary”
cat NP
case nom

sem Muffet
index 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣
phon “loves herself”
cat VP
agr 1

⎤
⎥⎦

�����
�����⎡

⎢⎢⎢⎣

phon “loves”
cat V
lex Love

agr 1

⎤
⎥⎥⎥⎦

⎡
⎢⎣
phon “herself”
cat NP
sem Mary

⎤
⎥⎦

Fig. 1. Phrase generated for the input ‘loves(Mary,Mary)’ (simplified)

A Translation from Logic to English with Dynamic Semantics 207

What makes the semantics dynamic is that the computation ofG can have side
effects in the form of updates to D and O. The discourse context D is updated
when a discourse referent is realized, as part of the algorithm for generating
a constant or a variable. If α is an individual-denoting constant, and is not
listed among the discourse referents, then G(α) returns a proper name, and the
discourse context is updated. For example, the expression Mary in (43) is added
to D after its first instance in the input formula is realized.

If α is listed in D, then an anaphoric expression is used. The algorithm for
generating an anaphor is: If a pronoun would be ambiguous, then use a definite
description or name; otherwise, use a pronoun. There is a great deal of sophis-
tication and subtlety this treatment could acquire [42–48], but this is not our
focus here. A (reflexive) pronoun is appropriate for the second instance of Mary
in (43), so the formula is rendered, “Mary loves herself.”

Like other discourse referents, variables are added toD after being mentioned,
so as to be made eligible for subsequent rendering with anaphora. Thus, after
everything is generated in (44), the variable x is added to the set of discourse
referents, so it can be realized with a pronoun on its second mention:

(44) Everything likes itself.
∀x[likes(x, x)]

Lifespan limitations. Constants added to D during the execution of an in-
stance of G may remain in D. However, it is necessary to remove variables from
D when their “lifespan” is exhausted. Thus, if the argument to G is a quantifi-
cational sentence binding a variable ξ, then the following line must be executed
before G exits:

D ← D −R(ξ)

where R(ξ) stands for the discourse referent associated with ξ. Suppose the input
formula were:

(45) ∀x¬[loves(Doug, x)] ∧ ∀x[loves(Mary, x)]

This would be rendered correctly as: “Doug loves nothing and Mary loves every-
thing” rather than “Doug loves nothing and Mary loves it.”

Removal of variables fromD is the key to accounting for the limited lifespan of
the discourse referent introduced by no self-respecting woman in (38) (“No self-
respecting woman will give you her phone number. #I know her.”) At the end
of the sentence, the variable bound by the universal quantifier is removed from
the discourse context, making it impossible for there to be subsequent anaphoric
references to it.3 If a pronoun is generated in the following sentence, it will have
to be associated with some other discourse referent.
3 Some of Karttunen’s observations in [31] suggest that discourse referents correspond-

ing to existentials with maximally wide scope should not be removed from the dis-
course context. For example, consider the sentence “I have a proof of this theorem
but it won’t fit in this margin.” One is tempted to analyze the first sentence using
an existential quantifier; but then how can there be subsequent anaphoric reference
to it? One possibility is to introduce a Skolem constant for wide-scope existentials.

208 E. Coppock and D. Baxter

3.3 Operator Context

G(α) depends not only on a discourse context D, but also on an operator context
O. As we describe futher below, logical operators and negations are stripped
away from the input formula, leaving a “clausal skeleton,” and the information
stripped away is stored in the operator context.

Definition. We define an operator context O as a tuple 〈V, S, n〉 where V is a
set of variable type entries, S is a stack of logical symbols, and n is an integer
representing the number of negations remaining to be expressed.

A variable type entry v ∈ V is a tuple 〈α, θ, τ〉, where α is a variable over
individuals, θ is a quantifier symbol, and τ is a type. Types are Cyc collec-
tions, such as Donkey, the collection of all donkeys. As mentioned above, Cyc
collections are like sets except that they are meant to represent concepts and
have instances, rather than members [49].4 Associating a type with a variable is
conceptually similar to identifying the type as the ‘restriction’ of the quantifier,
even though formally, quantifiers in first order logic do not specify restrictions,
unlike generalized quantifiers.

The stack of symbols S contains the variables and logical operators with
scope over the element of the formula that is currently being realized. We rep-
resent stacks as tuples 〈α1 . . . αn〉, where αn is at the top of the stack. The
wider the scope of the operator, the deeper on the stack it is. For the formula
∀x¬[loves(Mary, x)], at the point when Mary is being generated, S = 〈x,¬〉.
We use the variable x rather than the quantifier ∀ to indicate the scope of the
associated universal quantifier, because the variable uniquely identifies the quan-
tifier in question, while there may be many universal quantifiers in a formula.
The quantifier associated with the variable is computable from the variable’s
type entry in V .

Finally, n is used to keep track of unexpressed negations. As we will see
in the next section, negations can be removed from formulas in the course of
constructing the clausal skeleton, and this counter helps to ensure that every
negation is expressed exactly once. (Note that the value of n is not derivable
from S, as any negation on S may be either expressed or unexpressed.)

Clausal skeletons. In the generation of some formulas, parts of the input
formula are stripped away, leaving a clausal skeleton. For example, the clausal
skeleton of (46) is (47).

(46) ∀x∀y[[isa(x,Man) ∧ isa(y,Donkey) ∧ owns(x, y)]→ loves(x, y)]

(47) owns(x, y)→ loves(x, y)

The two isa statements in the antecedent of the conditional in (46) are variable
typing clauses. The binary predicate isa relates an individual to a collection,

4 Collections can also be complex; CycL contains collection-forming functions with
which concepts like “the collection of farmers who own a donkey” can be expressed.

A Translation from Logic to English with Dynamic Semantics 209

and signifies that the individual is an instance of the collection. Variable typing
clauses are removed, along with the universal quantifiers (as mentioned in [50]).

For any input formula of the form ∀ξα, where ξ is a variable and α is a
sentence, a simplified version of the algorithm for constructing clausal skeletons
σ and new variable type entries v is as follows (where Thing is the most general
collection, and ∼ stands for “is of the form” or “matches”):

(48) – If α ∼ [ψ → φ]:
• If ψ ∼ [isa(ξ, γ)]:
σ = φ
v = 〈ξ, ∀, γ〉
• Else if ψ ∼ [δ1 ∧ ... ∧ δn] where δi ∼ [isa(ξ, γ)]:
σ = [δ1 ∧ ... ∧ δi−1 ∧ δi+1 ∧ ... ∧ δn]→ φ
v = 〈ξ, ∀, γ〉
• Else:
σ = α
v = 〈ξ, ∀,Thing〉

– Else:
σ = α
v = 〈ξ, ∀,Thing〉

For a formula of the form ∃ξα, there are two cases:

(49) – If α ∼ [δ1 ∧ ... ∧ δn] where δi ∼ [isa(ξ, γ)]:
σ = [δ1 ∧ ... ∧ δi−1 ∧ δi+1 ∧ ... ∧ δn]
v = 〈ξ, ∃, γ〉

– Else:
σ = α
v = 〈ξ, ∃,Thing〉

The variable type entry v is added to the set V of variable type entries in the
operator context O. After the operator context is updated, G(σ) is computed;
in other words, the clausal skeleton is realized. Then, importantly, the operator
context is restored to its previous state. The information stored in the operator
context surfaces when the variable is expressed, as described in §3.3.

The clausal skeleton is isomorphic, clause for clause, to the resulting English
sentence. Thus the realization of (46) has two clauses, just as its clausal skeleton
(47) has:

(50) If a farmer owns a donkey, then he loves it.

When the antecedent of the clause consists entirely of a variable typing clause,
all that remains in the clausal skeleton is the consequent. An input formula such
as (51) will be realized as in (52), a single clause.

(51) isa(x,Man)→ loves(x,Mary)

(52) Every man loves Mary.

210 E. Coppock and D. Baxter

Thus, all of the content that is expressed below the clause level (in quantified
noun phrases) comes from the operator context, and every clause in the English
translation is part of the clausal skeleton.5

Negation stripping. When α is of the form ¬φ, the clausal skeleton of α is
φ. No variable type entries are produced in this case, of course, but the counter
representing the number of unexpressed negations, n, is incremented. “Stripping”
the negation in this way makes it possible for negations to be expressed sub-
clausally, using a member of the no-series (nobody, nothing, etc.). We use clausal
negation as a “back-up strategy” when expressing negation sub-clausally fails;
if n > 0 after φ is realized, either the verb is negated or negation is expressed
periphrastically with, for example, “It is false that...”.

Updating the operator stack. The main purpose of the operator stack is to
determine when NPIs are licensed. The generation procedure G(α) updates the
operator stack whenever α is a formula whose operator is in the set {∀, ∃,¬,→}.
If α is a quantificational formula such as ∀xφ, then the variable (x) is pushed
onto the operator stack, and popped off of it at the completion of G(α). If α
is a negative formula, then a ¬ symbol is pushed onto the operator stack and
again, popped off of it after G(α) is computed. If α is an implication, then the
symbol→ is pushed onto the stack and the stack is popped at the completion of
the generation of the antecedent, because implications only license NPIs in the
antecedent.

Determiner selection algorithm. The definition of G(α) where α is a vari-
able (variable realization) involves the operator context as well as the discourse
context. As mentioned in §3.2, variables are realized as pronouns when they are
listed in D and a pronoun would not be ambiguous. If a pronoun is not appro-
priate for realizing a variable, a lexical noun phrase containing a determiner and
a noun is used. The noun is the realization of the variable’s type, the τ such that
〈α, θ, τ〉 ∈ V . τ represents a collection, e.g. Man (the collection of all men),
and can be realized as, for example, man. There are several types of determiner
that may accompany the noun: definite (the), no (no), universal (every),
indefinite (a, some), npi (any, a or some).6

The first step in the algorithm for choosing a determiner type is to compute
whether or not a variable could be expressed as an NPI, i.e., with any. Both
universally and existentially bound variables can be realized with any, but the
5 If the variable typing clauses were not removed, the variables would be registered

with type Thing and the output would contain more clauses: “If something is a
farmer and some other thing is a donkey then the thing loves the other thing.” If
the variables were not registered in the operator context at all, then the universal
quantifier would not be stripped from the formula, and the output would be as
follows, with explicit variables: “For every x, for every y, if x is a farmer and y is a
donkey and x owns y, then x loves y.”

6 Another determiner type is wh (what, which). Wh- determiners are used for unbound
variables in formulas to be generated with interrogative force. We ignore questions
here for the sake of simplicity.

A Translation from Logic to English with Dynamic Semantics 211

two quantifier types differ with respect to the scope that they must have relative
to an NPI licenser. In order to qualify for being realized with any, an instance of a
variable must be bound by either a universally quantified variable outscoping an
NPI licenser, or an existentially bound quantifier outscoped by one. For example,
(29), repeated below is rendered as in (54).

(53) ∀x[¬loves(Mary, x)]

(54) Mary doesn’t love anything.

In contrast, when the universal quantifier is inside the scope of negation, the
output should be Mary doesn’t love everything.

The algorithm for determining whether or not NPI any is licensed is as follows:
First, look up the quantifier of the variable in question; then if the quantifier
is ∀, the question is whether the variable is deeper on the stack than an NPI
licenser; if the quantifier is ∃, the question is whether the NPI licenser is deeper
than it. Call the NPI licenser π; if the variable has no NPI licenser, then π is
null.

Given π, a variable type entry 〈α, θ, τ〉 for variable ξ, and an unexpressed
negation counter n, the determiner is chosen according to the following algo-
rithm:

(55) – IfR(χ) ∈ D (i.e., a previous instance of the variable has been realized),
return definite.

– If π is non-null:
• If π = ¬ and n > 0, then return no and decrement n by one.
• Otherwise, return npi.7

– If θ = ∀, return universal.
– Otherwise, return indefinite.

Note at this point that the set of variable type entries V is not redundant with
the discourse context D, despite the fact that they may simultaneously contain
the same variable as an entry. The discourse context is used for referents that
have already been realized, but variable type entries are used in the formulation
of the first mention of the variable.

Now consider example (46) again, repeated here as (56).

(56) ∀x∀y[[isa(x,Man) ∧ isa(y,Donkey) ∧ owns(x, y)]→ loves(x, y)]

Right before x is generated for the first time, 〈x,Man, ∀〉 ∈ V (i.e. x is univer-
sally quantified, and has type Man), S = 〈x,→〉 (i.e., the current expression is
inside the antecedent of a conditional), n = 0 (there are no unexpressed nega-
tions), and x is not in D (so x has not previously been realized). Therefore G(x)
will realized with an npi-type determiner, as either any man or with an indef-
inite (a or some). After x is realized, it will be in D, so it will be realized as a

7 In the generation of variables with npi-type determiners, we make the stylistic choice
to use any when there is only one mention of the variable, and an indefinite otherwise.

212 E. Coppock and D. Baxter

masculine pronoun or as the man. If instead, S were merely 〈x〉 (so the current
expression is not in the scope of an NPI licenser), then π would be null, and the
appropriate determiner type would be every.

Another case where npi-type determiners are chosen is in the scope of nega-
tion, when there is no negation to be expressed, i.e., when π = ¬ and n �> 0.
Such a situation arises when negation is expressed on the verb, as in Mary doesn’t
love anything. When n > 0 (there are unexpressed negations) and π = ¬ (the
NPI licenser for the variable is negation), the variable can be used to express
negation, as in Mary loves nothing.

We are now in a position return to the contrast between indefinite determiners
and every with respect to the lifespan of the discourse referents they introduce.
Recall the fact that whereas discourse referents introduced by indefinites in the
protasis of a conditional extend to the apodosis, those introduced by every are
limited to the protasis:

(57) If ai farmer owns aj/*everyj donkey, then hei loves itj .

We have just seen how the acceptable variant of (57), with an indefinite deter-
miner in the antecedent, is generated for an input like (46). The only way for
every to be generated in the antecedent of a conditional is for the universally
quantified variable to be outscoped by →, as in the following example:

(58) ∀x[isa(x,Farmer)∧∀y[isa(x,Donkey)→ owns(x, y)]]→ loves(x,Mary)

The formula in (58) would be rendered as follows:

(59) If a farmer owns every donkey, then he loves Mary.

When it is time to realize the variable y for the first time, S = 〈x,→, y〉, so the
computation of π for y will yield a null value, since y is universally quantified
and universally quantified variables must be outside the scope of an NPI licenser.
The determiner selection algorithm will therefore correctly choose every. But in
this case, the scope of the quantifier will have ended by the time the consequent
of the conditional is reached. Thus, discourse referents introduced by every in
the protasis of a conditional will never extend to the apodosis.

4 Summary and Outlook

We have presented an algorithm for translating predicate logic to English that
uses dynamically updated information states. It deals with referring and non-
referring expressions in a unified framework, capturing the fact that both require
an accessible antecedent. This is formalized using the discourse context, where
discourse referents are placed after they are introduced. The system also cap-
tures special features of non-referring expressions, which correspond to logical
variables. Discourse referents associated with variables have limited lifespans
and are introduced with quantificational determiners, whose use is governed by
a complex set of factors, modelled with the operator context.

A Translation from Logic to English with Dynamic Semantics 213

Just as general frameworks for generating semantic representations from En-
glish sentences (e.g. [51], [29]) are semantic theories, the framework presented
here is in a sense a theory of semantics (or what we might call ‘inverse seman-
tics’). It differs in its use of theoretical primitives from semantic theories that
were developed from a parsing perspective, as the theoretical constructs that
we found useful in generation are slightly different from those that were found
to be useful in parsing. Given such differences, the generation perspective could
potentially shed light on the theory of semantics more generally, and provide
more elegant or even more empirically adequate accounts of certain phenomena.

One area where the generation perspective may shed light is in NPI licensing.
NPI any is not always licensed in the semantic scope of negation:

(60) *Anyone doesn’t love me.

On our analysis, this configuration is blocked by Noone loves me. Thus, it is not
necessary to associate syntactic constraints with NPI any to rule (60) out. In
general, implicit in the notion of a ‘determiner selection algorithm’ is the idea of
blocking, an idea that is natural from the generation perspective, and we believe
it may be worthwhile to pursue this view of quantificational determiners further.

Secondly, the notion of accessibility between pronouns and their antecedents
receives quite a different treatment here from the one in Discourse Represena-
tion Theory. Whereas the accessibility relationship is characterized in DRT as a
structural relationship within Discourse Representation Structures, accessibility
is formalized here as existence in the discourse context, a potentially transient
state that ends for variables when the logical expression corresponding to the
quantifier that binds them has been realized. In DRT, proper names always
“float to the top” of a DRS, so they are always available; this corresponds to the
fact that constants are never removed from the discourse context. We feel that
the present view on accessibility has a certain intuitive appeal, and it would be
worthwhile to compare the empirical predictions of the two approaches to see if
they differ.

Natural language generation also puts presupposition in a new light. Defi-
nite descriptions and pronouns, for example, are usually analyzed as containing
uniqueness presuppositions. The association of these items with uniqueness is
encoded in the present system via conditions on the choice of referring expres-
sion type. Presuppositions in general need not be represented declaratively, but
can be implicitly encoded in a procedural generation algorithm. This view on
presupposition would capture the fact that pronouns are quite easy to process,
and would therefore seem to carry a very simple message, contrary to what one
would expect if they came associated with complex presuppositional content.

References

1. Horacek, H.: An algorithm for generating referential descriptions with flexible in-
terfaces. In: Proceedings of the 35th Annual Meeting of the Association for Com-
putational Linguistics, pp. 206–213 (1988)

2. Dale, R.: Cooking up referring expressions. In: Proceedings of the 27th Annual
Meeting of the Association for Computational Linguistics (1989)

214 E. Coppock and D. Baxter

3. Reiter, E.: The computational complexity of avoiding false implicatures. In: Pro-
ceedings of the 28th Annual Meeting of the Association for Computational Lin-
guistics (1990)

4. Reiter, E., Dale, R.: A fast algorithm for the generation of referring expressions. In:
Proceedings of the 14th International Conference on Computational Linguistics,
Nantes, pp. 232–238 (1992)

5. Dale, R., Reiter, E.: Computational interpretations of the Gricean maxims in the
generation of referring expressions. Cognitive Science 19, 233–263 (1994)

6. Copestake, A., Flickinger, D., Malouf, R., Riehemann, S., Sag, I.: Translation using
minimal recursion semantics. In: Proceedings of the Sixth International Conference
on Theoretical and Methodological Issues in Machine Translation, Leuven, Belgium
(1995)

7. Shaw, J., McKeown, K.: Generating referring quantified expressions. In: Proceed-
ings of the first international conference on natural language generation, Mitzpe
Ramon, Israel, pp. 100–107 (2000)

8. Krahmer, E., Van Erk, S., Verleg, A.: Graph-based generation of referring expres-
sions. Computational Linguistics (2003)

9. Van Deemter, K.: Generating referring expressions: Boolean extensions of the in-
cremental algorithm. Computational Linguistics 28, 37–52 (2002)

10. Siddharthan, A., Copestake, A.: Generating anaphora for simplifying text. In: Pro-
ceedings of the 4th Discourse Anaphora and Anaphor Resolution Colloquium, pp.
199–204 (2002)

11. Siddharthan, A., Copestake, A.: Generating referring expressions in open domains.
In: Proceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics, Barcelona, Spain, pp. 408–415 (2004)

12. Varges, S., Van Deemter, K.: Generating referring expressions containing quanti-
fiers. In: Proceedings of the 6th International Workshop on Computational Seman-
tics, pp. 1–13 (2005)

13. Kelleher, J.D., Kruijff, G.J.M.: Incremental generation of spatial referring expres-
sions in situated dialog. In: Proceedings of COLING/ACL 2006 (2006)

14. Paraboni, I., Van Deemter, K., Masthoff, J.: Generating referring expressions: Mak-
ing referents easy to identify. Computational Linguistics 33, 229–254 (2007)

15. Van Deemter, K., Krahmer, E.: Graphs and booleans: on the generation of referring
expressions. In: Bunt, H., Muskins, R. (eds.) Computing Meaning, vol. 3, pp. 397–
422. Springer, Dordrecht (2008)

16. Areces, C., Koller, A., Striegnitz, K.: Referring expressions as formulas of descrip-
tion logic. In: White, M., Nakatsu, C., McDonald, D. (eds.) Proceedings of the
Fifth International Natural Language Generation Conference, Salt Fork, Ohio, pp.
42–49. Association for Computational Linguistics (2008)

17. Wilcock, G., Matsumoto, Y.: Head-driven generation with HPSG. In: Proceed-
ings of COLING-ACL 1998: Workshop on Usage of WordNet in Natural Language
Processing Systems, pp. 1393–1397 (1998)

18. Carroll, J., Flickinger, D., Copestake, A., Poznanski, V.: An efficient chart genera-
tor for (semi-)lexicalist grammars. In: Proceedings of the 7th European Workshop
on Natural Language Generation, Toulouse, France (1990)

19. Copestake, A., Flickinger, D., Pollard, C., Sag, I.A.: Minimal recursion semantics:
An introduction. Research on Language and Computation 3, 281–332 (2005)

20. Carroll, J., Oepen, S.: High efficiency realization for a wide-coverage unification
grammar. In: Dale, R., Wong, K.F. (eds.) Proceedings of the Second International
Joint Conference on Natural Language Processing (IJNLP 2005), Springer, Hei-
delberg (2005)

A Translation from Logic to English with Dynamic Semantics 215

21. Wedekind, J., Kaplan, R.M.: Ambiguity-preserving generation with LFG- and
PATR-style grammars. Computational Linguistics 22, 555–558 (1996)

22. Wedekind, J.: Semantic-driven generation with LFG- and PATR-style grammars.
Computational Linguistics 25, 277–281 (1999)

23. Kaplan, R.M., Wedekind, J.: LFG generation produces context-free languages. In:
Proceedings of the 18th Conference on Computational Linguistics, Saarbrücken,
Germany, pp. 425–431 (2000)

24. Cahill, A., van Genabith, J.: Robust pcfg-based generation using automatically
acquired lfg approximations. In: Proceedings of the 21st International Conference
on Computational Linguistics and 44th Annual Meeting of the ACL, Sydney, Aus-
tralia, pp. 1033–1040. Association for Computational Linguistics (2006)

25. Calder, J., Reape, M., Zeevat, H.: An algorithm for generation in unification cat-
egorial grammar. In: Proceedings of the 4th Conference of the European Chapter
of the Association for Computational Linguistics, Manchester, UK, pp. 233–240
(1989)

26. Phillips, J.D.: Generation of text from logical formulae. Machine Translation 8,
209–235 (1993)

27. White, M.: Reining in CCG chart realization. In: Belz, A., Evans, R., Piwek, P.
(eds.) INLG 2004. LNCS (LNAI), vol. 3123, pp. 182–191. Springer, Heidelberg
(2004)

28. Pollard, C., Yoo, E.J.: A unified theory of scope for quantifiers and wh- phrases.
Journal of Linguistics 34(2), 415–445 (1998)

29. Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer Academic Publishers, Dor-
drecht (1993)

30. Heim, I.: The Semantics of Definite and Indefinite Noun Phrases. PhD thesis, MIT
(1982)

31. Karttunen, L.: Discourse referents. In: McCawley, J.D. (ed.) Syntax and Semantics
7: Notes from the Linguistic Underground, pp. 363–385. Academic Press, New York
(1976)

32. Sailer, M.: Npi licensing, intervention and discourse representation structures in
hpsg. In: Müller, S. (ed.) Proceedings of the HPSG 2007 Conference. CSLI Publi-
cations, Stanford (2007)

33. Reyle, U.: Dealing with ambiguities by underspecification: Construction, represen-
tation, and deduction. Journal of Semantics 10(2), 123–179 (1993)

34. De Swart, H.: Licensing of negative polarity items under inverse scope. Lingua 105,
175–200 (1998)

35. Lenat, D.: Cyc: A large-scale investment in knowledge infrastructure. Communi-
cations of the ACM 38 (1995)

36. Ramachandran, D., Reagan, P., Goolsbey, K.: First-orderized ResearchCyc: Ex-
pressivity and efficiency in a common-sense ontology. In: Papers from the AAAI
Workshop on Contexts and Ontologies: Theory, Practice and Applications, Pitts-
burg, PA (2005)

37. Matuszek, C., Cabral, J., Witbrock, M., DeOliveira, J.: An introduction to the
syntax and content of Cyc. In: Proceedings of the 2006 AAAI Spring Symposium
on Formalizing and Compiling Background Knowledge and Its Applications to
Knowledge Representation and Question Answering, Stanford, CA (2006)

38. Heim, I.: File change semantics and the familiarity theory of definiteness. In: Bau-
rle, R., Schwarze, C., Von Stechow, A. (eds.) Meaning, Use, and the Interpretation
of Language, pp. 164–189. Walter de Gruyter, Berlin (1983)

39. Muskens, R.: Combining Montague semantics and discourse representation. Lin-
guistics and Philosophy 19, 143–186 (1996)

216 E. Coppock and D. Baxter

40. Pollard, C., Sag, I.A.: Head-Driven Phrase Structure Grammar. University of
Chicago Press, Chicago (1994)

41. Wechsler, S., Zlatić, L.: The Many Faces of Agreement. Center for the Study of
Language and Information, Stanford (2003)

42. Chafe, W.L.: Givenness, contrastiveness, definiteness, subjects, topics and point of
view. In: Li, C.N. (ed.) Subject and topic, pp. 25–55. Academic Press, New York
(1976)

43. Ariel, M.: Accessing NP antecedents. Routledge, London (1990)
44. Gundel, J.K., Hedberg, N., Zacharski, R.: Cognitive status and the form of referring

expressions in discourse. Language 69, 274–307 (1993)
45. Brennan, S.: Centering attention in discourse. Language and Cognitive Pro-

cesses 10, 137–167 (1995)
46. Grosz, B.J., Joshi, A.K., Weinstein, S.: Providing a unified account of definite noun

phrases in discourse. In: Proceedings of the 21st Annual Meeting of the Association
for Computational Linguistics, Cambridge, MA, pp. 44–49 (1983)

47. Grosz, B.J., Joshi, A.K., Weinstein, S.: Centering: A framework for modeling the
local coherence of discourse. Computational Linguistics 21, 203–226 (1995)

48. Beaver, D.I.: The optimization of discourse anaphora. Linguistics and Philoso-
phy 27, 3–56 (2004)

49. Lenat, D.B., Guha, R.V.: Building Large Knowledge-Based Systems. Addison-
Wesley, Reading (1990)

50. Baxter, D., Shepard, B., Siegel, N., Gottesman, B., Schneider, D.: Interactive nat-
ural language explanations of cyc inferences. In: Proceedings of AAAI 2005: Inter-
national Symposium on Explanation-aware Computing, Washington, D.C. (2005)

51. Heim, I., Kratzer, A.: Semantics in Generative Grammar. Blackwell, Oxford (1998)

	A Translation from Logic to English with Dynamic Semantics
	Introduction
	Problems with Non-referential `Discourse Referents'
	Determiner Selection
	Lifespan Limitations

	The Cyc NLG System
	Input: First-Order Predicate Calculus Part of CycL
	Discourse Context
	Operator Context

	Summary and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

